
A Model-Based Programming
Skunk Works

Andrew Bachmann, Charles Neveu,
Charles Pecheur, Mark Shirley,

Will Taylor, Steve Wragg,
Patrick Regan, Louise Helenius

Previously: Brian Williams & Reid Simmons

Summary

Project Type:
Infrastructure and support

Goal:
Create development & debugging tools that enable a
small team of spacecraft engineers to rapidly create
high capability autonomy software

Status:
– Work focused on fault detection, identification & recovery
– Key goals achieved (but similar work needed for rest of

agent)
– Project ending this year
– Proposals for two, smaller follow on tasks

Model-Based Programming

Planning
Given

Given

??State Histories

Component Modes

Commands

Initial State

Simulation, FMEA

Given

Given

Given ??

• Build a mathematical system model:
Describe what the system can do (the artifact) separately from
what you want it to do (the control policy)
– Greatly facilitates model reusability

• Analyze this model mechanically to find ‘goal’ behaviors,
depending upon the analysis task
– Simplifies programming control code by accounting for the combinatorics

of component interactions

DiagnosisHazard Analysis
Given

??

??

Given

??

Partial

Partial

Partial

State Histories

Component Modes

Commands

Initial State

State Histories

Component Modes

Commands

Initial State

State Histories

Component Modes

Commands

Initial State

Partial

Undesirable
final state

Desirable
final state

Sensor
Histories

Component-connection models

Original Project Goals

1. A declarative, engineer-friendly model-based
programming language

2. A visual model development environment
3. Tools for automatically generating test model

procedures
4. Tools and processes for collaborative model

development
5. Validation through a pair of autonomy

experiments conducted by spacecraft engineers
and university graduate students

Goal 1. An Engineer-friendly Model-
based Programming Language

• Developed JMPL (Java-MPL)

• Object oriented, has a Java-based syntax

• Compiles model to XMPL format
– XML-based model interchange language used

by Livingston & Northrup/Grumman RLV2
team (spec available)

– proposed as a model interchange format for L2,
Titan (Williams, MIT) and derivatives

Goal 2. A Visual Model Development Environment

• Stanley (initiated
under RAX)

• Completed under
Skunkworks

• Visual modeler

• Component Library

• Draw schematic

• Draw state machines
describing individual
components

• Add constraints as
JMPL code fragments

System Modeling

Goal 2. A Visual Model Development Environment

• Invoke compiler with
selected model JMPL
code to generate
XMPL code.

• Interactively with
Scenario Mgr, or with
editor, create test
scenarios.

• Load XMPL model
into Livingstone (L2).

• Use Scenario Mgr to
send cmds to L2.

• Update Stanley display
with L2 state.

• Interact with
Candidate Mgr &
History Table.

Scenario Debugging

PITEX GPU Parameter History Display Included in Livingston release

Goal 2. A Visual Model Development Environment

Finally started a reimplementation on a more maintainable foundation

• Available after Christmas
• Paid for by SLI

Goal 3. Tools for automatically generating
test procedures for models

• Shifted from test generation approach
to model-checking

• Two approaches
a.Translation of Livingstone model to a model-

checker (SMV)

b.Explicit search of execution traces using Java
Pathfinder (Automated Software Engineering group at ARC)

a. From Livingstone Models
to SMV Models

• Developed by Charles Pecheur (Ames) and Reid Simmons
(CMU)

• Similar nature => translation is easy
• Properties in temporal logic + pre-defined patterns
• Two generations: MPL (lisp) & JMPL (java)
• Supports model consistency check & limited forms of

hazard analysis
• Experiments with ISPP (KSC)

– Huge state space (10^55) but tractable with SMV
– Exposed known and unknown modeling errors

• Can fault F be diagnosed knowing the last n steps
(assuming correct model and "perfect" engine)?

• Look for two sequences (of length n), one ending
in F and not the other, that look identical to
diagnosis (same commands and observables)

• Approach: use SAT solver to find them

a. Assessing Diagnosability

...x1

x1'

x2

x2'

xn

xn'

T

T

T

T

T

T

cmd
obs

cmd
obs

cmd
obs

F

! F...

Paper available

b. Livingstone Pathfinder

• Start from conventional testing (the real program).
• Instrument the code to be able to do full model

checking (or as close as possible).

observables

Simulator
(Livingstone)

Model
commands

& faults

MIR Model

Livingstone

Driver Scenario

Model
Checking

Engine

get state
set state

single step
backtrack

T
E
S
T
B
E
D

Livingstone + driver (exec) Pathfinder

Continued under ECS

Goal 4. Tools and processes for
collaborative model development

• Nothing special done

• We’re using standard tools like CVS,
GNATS …

Goal 5. Validation

Customers:
• X-34 Experimental Reusable Launch Vehicle

(NITEX/PITEX experiment)

• X-37 Experimental Reusable Launch Vehicle

• Honeywell and Interface Control Systems RLV2
team

• Northrup/Grumman RLV2 team

All associated with NASA’s Space Launch Initiative

Efforts outside of
monitoring & diagnosis

• Plan library development tools (last 6 months)

– Designed and partially implemented new
language for Europa (NDDL)

• Andrew Bachman, Jeremy Frank, Ari Jonsson

– Implemented ‘Potato’ visualization of the
planning process (moving toward planning
process visualization toolkit)

• Will Taylor

Efforts outside of
monitoring & diagnosis

• Rapid prototyping of autonomy testbeds
LiveInventor

dynamics +
kinematics +
collisions / friction +
integrated world modeling +
hybrid execution language

Charles Neveu,
Mark Shirley

NASA Relevance:

• Facilitate transition of model-based programming
into a sustainable engineering practice

• Reduce flight software development costs; increase
flight software robustness

Customers:
• X-34 Experimental RLV (NITEX/PITEX flight

experiment)
• X-37 Experimental RLV
• Honeywell and Interface Control Systems RLV2

team
• Northrup/Grumman RLV2 team

Goal: Create modeling and debugging tools for model-
based programming of autonomous systems

Work focused on monitoring, diagnosis & recovery
portion of agent

Key Deliverables:
• Visual modeling language, more engineer-friendly

textual syntax
• Application of formal V&V techniques to model-

based autonomy
• Rapid prototyping of scenarios

A ModelA Model--Based Programming Skunk WorksBased Programming Skunk Works
Mark Shirley/ARCMark Shirley/ARC

Schedule:
• Project ending in FY02

Proposed next steps:
• Modeling and Debugging tools for Planning

• Simulation-based fault insertion testbed for K9 arm

• Model-checking work picked up by another R&D
program

backups

Relationship to Mission Sim Facility

• Candidate for physics simulation

• Made sure it’s compatible with Viz

• Not just for rovers; PSA, etc

Livingstone Progress Summary
Monitoring (fault detection)

– Discrete dynamics
– Diagnostic cycle management (timeouts, overlapping commands)
– Hybrid dynamics
– Performance parameter estimation

Fault diagnosis
– Single hypothesis interface to rest of agent
– Multiple hypotheses interface to rest of agent
– Long-lead time diagnoses
– Information-gathering actions

Command sequence generation
– Safing
– Recoveries

Interaction with the ground
– Limited visibility of commands onboard
– Limited downlink bandwidth

Software engineering
– Integration with flight control software
– Process executed by a non-experimental design team

Demonstrated
by RAX

Progress since
RAX

MPL2SMV

Livingstone
Model

SMV
Model

Livingstone
Requirement

SMV
Requirement

Livingstone
Trace

SMV
Trace

Livingstone

SMV

M
P
L

2

S
M
V

Autonomy Verification

Livingstone (L2) +
Skunkworks Flow Chart

FDIR for the International Space Station (ISS) using Model-based
Reasoning (L2)

OBJECTIVES

• To develop model-based reasoning technology for
FDIR of the Command and Data Handling (C&DH)
subsystem of ISS.

APPROACH

• Three phases: 1) offline analysis of ISS data dumps, 2)
realtime ground ops, 3) realtime ISS ops.

• Leverage ISS Caution and Warning (C&W) system as
monitors to L2 models.

• Model hardware: computers and buses.
• Model software: 1) memory locations as containers, 2)

software functions as components whose ports are
inputs/outputs of software, 3) qualitative rate
monotonic scheduler.

BENEFITS
• Increase ISS safety and science at a time when ISS

budgets are decreasing and loads on ISS C&DH are
still increasing.

• Provide foundation for IVHM – all subsystems use
C&DH for sense/act – SLI will leverage ISS.

• Determine utility of using model-based reasoning to
model software processes in conjunction with
hardware.

w

~W

MDM Hardware
and Software FSM

MDM Module

MDM module is made up of collection components including PS, SX
Backplane, I/O backplane, I/O Cards, SPD1553 Cards, IOCU card.

MSTR RSTL from IOCU

power_in from RPCM

~W

cards
ok

IOCU
ok

power
down

IOCU RSTL

power

IORESTEL

power supply

physical
backplane

w

~W

power

sx
backplane

I/O
backplane

CCSDS content

SX Bus Exception from BST A

power

SPX1553 IOB 0

1553 upper
tier bus

1553 lower
tier Bus_i

w

~W

w

~W

A

B~W

ch1

A

B~W

ch2

1553 lower
tier Bus J

SX(1553) card status 1553 Channel 1 status

BST A State Inputs
to L2 C&DH Models

IOCU

BIA

CRS CPS

~W

power
down

reset
no I/O

I/O
ok

software

